%matplotlib inline
Dataframe are a data structure equivalent to individual tables in a database.
Nowadays every high level programming language has its own implementation of the same concept
A dataframe is a table, indicized with rows and columns.
Imagine a table containing information about people:
import pandas as pd
print(pd.__version__)
1.2.3
# hidden data generation cell
import pandas as pd
data = pd.DataFrame(
[
('Andrea', 24, 178, 'Male'),
('Maria', 33, 154, 'Female'),
('Luca', 30, 175, 'Male'),
],
columns=['name', 'age', 'height', 'sex'],
)
data.set_index('name', inplace=True)
data
age | height | sex | |
---|---|---|---|
name | |||
Andrea | 24 | 178 | Male |
Maria | 33 | 154 | Female |
Luca | 30 | 175 | Male |
# skipped cell about hierarchical indexes
# Righe e colonne possono avere indici **GERARCHICI**,
# in cui ho più livelli di indicizzazione delle mie informazioni
import pandas as pd
data = pd.DataFrame(
[
('Andrea', '2015', 'residenza', 'Rimini', 'via stretta 20'),
('Andrea', '2015', 'domicilio', 'Bologna', 'via larga 30'),
('Andrea', '2016', 'residenza', 'Rimini', 'via stretta 20'),
('Andrea', '2016', 'domicilio', 'Bologna', 'via larga 30'),
('Giulio', '2015', 'residenza', 'Rimini', 'via giusta 50'),
('Giulio', '2015', 'domicilio', 'Bologna', 'via falsa 40'),
('Giulio', '2016', 'residenza', 'Bologna', 'via torna 10'),
('Giulio', '2016', 'domicilio', 'Bologna', 'via torna 10'),
],
columns=['nome', 'anno', 'tipologia', 'città', 'indirizzo'],
)
data.set_index(['nome', 'anno', 'tipologia'], inplace=True)
data = data.unstack()
data.columns = data.columns.swaplevel(0, 1)
#data.sortlevel(0, axis=1, inplace=True)
Dataframes allow us to collect and manipulat informations in a very comfortable way, and are the central pillar of modern data analysis.
A special role is played by the data that are organized as TIDY DATA, term introduced in the community by Wickham in 2010 in his seminal paper.
Tidy data is a way of structuring your data that makes analysis, visualization and data maitenance particularly easy. It is a simplified form of database normalization, a series of principles on how to design a good database.
A tidy dataframe is defined as having the following properties:
where:
An experiment will provide several tidy table (a database), connected logically one to the other.
import pandas as pd
data = pd.DataFrame(
[
('Andrea', '2015', 'residenza', 'Rimini', 'via stretta 20'),
('Andrea', '2015', 'domicilio', 'Bologna', 'via larga 30'),
('Andrea', '2016', 'residenza', 'Rimini', 'via stretta 20'),
('Andrea', '2016', 'domicilio', 'Bologna', 'via larga 30'),
('Giulio', '2015', 'residenza', 'Rimini', 'via giusta 50'),
('Giulio', '2015', 'domicilio', 'Bologna', 'via falsa 40'),
('Giulio', '2016', 'residenza', 'Bologna', 'via torna 10'),
('Giulio', '2016', 'domicilio', 'Bologna', 'via torna 10'),
],
columns=['nome', 'anno', 'tipologia', 'città', 'indirizzo'],
)
data
nome | anno | tipologia | città | indirizzo | |
---|---|---|---|---|---|
0 | Andrea | 2015 | residenza | Rimini | via stretta 20 |
1 | Andrea | 2015 | domicilio | Bologna | via larga 30 |
2 | Andrea | 2016 | residenza | Rimini | via stretta 20 |
3 | Andrea | 2016 | domicilio | Bologna | via larga 30 |
4 | Giulio | 2015 | residenza | Rimini | via giusta 50 |
5 | Giulio | 2015 | domicilio | Bologna | via falsa 40 |
6 | Giulio | 2016 | residenza | Bologna | via torna 10 |
7 | Giulio | 2016 | domicilio | Bologna | via torna 10 |
The important thing to remember with this type of data is that this might not be the ideal format for the analysis you have in mind.
The tidy format is brilliant, especially for long term storage and to keep the metadata about the measurements, but some analysis might need the data to be transformed in non-tidy formats (for example to evaluate differences in various time points)
For this reason, all the libraries that manage dataframe have a strong focus on data transformation, reshaping the data from one form to the other. This allows to easily obtain the best structure for the analysis we want to do without sacrificing the data quality in long term storage.
pandas is the main library in python that allows one to manipulated dataframe structures.
The library introduces the class DataFrame, that holds a single table made out of various Series, that represents each column, all sharing the same index
One of the strenghts of pandas is the ability to read and write almost any tabular format.
For example we can download and parse tables from a wikipedia page with a single command
We will discuss:
import pandas as pd
# import lxml - required for the download
import numpy as np
page = 'https://en.wikipedia.org/wiki/List_of_highest-grossing_films'
wikitables = pd.read_html(page)
len(wikitables)
92
The page contains several tables, and we obtain a list with all of them.
The one we are interested about is the first one, the proper table of the highest grossing movies.
wikitables[0].head()
Rank | Peak | Title | Worldwide gross | Year | Reference(s) | |
---|---|---|---|---|---|---|
0 | 1 | 1 | Avengers: Endgame | $2,797,800,564 | 2019 | [# 1][# 2] |
1 | 2 | 1 | Avatar | $2,790,439,000 | 2009 | [# 3][# 4] |
2 | 3 | 1 | Titanic | $2,194,439,542 | 1997 | [# 5][# 6] |
3 | 4 | 3 | Star Wars: The Force Awakens | $2,068,223,624 | 2015 | [# 7][# 8] |
4 | 5 | 4 | Avengers: Infinity War | $2,048,359,754 | 2018 | [# 9][# 10] |
Reading functions contain tens of parameters to allow us to read the data exactly as we need them.
wikitables = pd.read_html(
page,
attrs={"class":"wikitable sortable plainrowheaders"},
index_col='Rank',
)
wikitables[0].head()
Peak | Title | Worldwide gross | Year | Reference(s) | |
---|---|---|---|---|---|
Rank | |||||
1 | 1 | Avengers: Endgame | $2,797,800,564 | 2019 | [# 1][# 2] |
2 | 1 | Avatar | $2,790,439,000 | 2009 | [# 3][# 4] |
3 | 1 | Titanic | $2,194,439,542 | 1997 | [# 5][# 6] |
4 | 3 | Star Wars: The Force Awakens | $2,068,223,624 | 2015 | [# 7][# 8] |
5 | 4 | Avengers: Infinity War | $2,048,359,754 | 2018 | [# 9][# 10] |
# percentage variation
url = "https://www.statbureau.org/en/united-states/inflation-tables/inflation.monthly.csv"
temp = pd.read_csv(url, index_col='Year')
temp.columns = [col.strip() for col in temp.columns]
totals = temp[['Total']]
del temp['Total']
fractional_variation =(temp.stack()+100)/100
fractional_variation = fractional_variation.cumprod()
wikitables = pd.read_html(page)
dataframe = wikitables[0].copy()
The dataframe behave similarly to a dictionary.
the column names are the keys, and the values are the Series associated with those names
dataframe.columns
Index(['Rank', 'Peak', 'Title', 'Worldwide gross', 'Year', 'Reference(s)'], dtype='object')
dataframe['Year'].head()
0 2019 1 2009 2 1997 3 2015 4 2018 Name: Year, dtype: int64
Series behave similarly to numpy array in regards to vectorization, but they join values based on the index and not the order of the elements
dataframe['Year'].head() * 100
0 201900 1 200900 2 199700 3 201500 4 201800 Name: Year, dtype: int64
a = pd.Series(
[1, 2, 3],
index=['a', 'b', 'c'],
)
a
a 1 b 2 c 3 dtype: int64
b = pd.Series(
[5, 6, 7],
index=['c', 'a', 'b'],
)
b
c 5 a 6 b 7 dtype: int64
a+b
a 7 b 9 c 8 dtype: int64
Series and DataFrames inherit also the slicing properties of numpy arrays
a = pd.Series(
[1, 2, 3],
index=['a', 'b', 'c'],
)
a>1
a False b True c True dtype: bool
a[a>1]
b 2 c 3 dtype: int64
a = pd.Series(
[1, 2, 3, 4, 5, 6],
index=['a', 'b', 'c', 'd', 'e', 'f'],
)
idx_1 = a>2
idx_2 = a<5
a[idx_1 & idx_2]
c 3 d 4 dtype: int64
They can be sliced on the index as well, both by single keys and range of keys.
the range of keys are referred to the order of the index, not the natural sorting of the values contained in it
NOTE: the slicing also contains the last value of the slice as well!
a['a']
1
a['a':'b']
a 1 b 2 dtype: int64
b = pd.Series([5, 6, 7], index=['c', 'a', 'b'])
b['c':'a']
c 5 a 6 dtype: int64
I can manipulate columns in various ways, starting from the possibility of removing unwanted ones
del dataframe['Reference(s)']
dataframe.head()
Rank | Peak | Title | Worldwide gross | Year | |
---|---|---|---|---|---|
0 | 1 | 1 | Avengers: Endgame | $2,797,800,564 | 2019 |
1 | 2 | 1 | Avatar | $2,790,439,000 | 2009 |
2 | 3 | 1 | Titanic | $2,194,439,542 | 1997 |
3 | 4 | 3 | Star Wars: The Force Awakens | $2,068,223,624 | 2015 |
4 | 5 | 4 | Avengers: Infinity War | $2,048,359,754 | 2018 |
dataframe.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Rank 50 non-null int64 1 Peak 50 non-null object 2 Title 50 non-null object 3 Worldwide gross 50 non-null object 4 Year 50 non-null int64 dtypes: int64(2), object(3) memory usage: 1.4+ KB
dataframe.select_dtypes(include='int64').head()
Rank | Year | |
---|---|---|
0 | 1 | 2019 |
1 | 2 | 2009 |
2 | 3 | 1997 |
3 | 4 | 2015 |
4 | 5 | 2018 |
dataframe.select_dtypes(include=np.number).head()
Rank | Year | |
---|---|---|
0 | 1 | 2019 |
1 | 2 | 2009 |
2 | 3 | 1997 |
3 | 4 | 2015 |
4 | 5 | 2018 |
dataframe['Title'].head()
0 Avengers: Endgame 1 Avatar 2 Titanic 3 Star Wars: The Force Awakens 4 Avengers: Infinity War Name: Title, dtype: object
dataframe.sort_values('Year').head()
Rank | Peak | Title | Worldwide gross | Year | |
---|---|---|---|---|---|
39 | 40 | 1 | Jurassic Park | $1,029,939,903 | 1993 |
48 | 49 | 2 | The Lion King | $968,483,777 | 1994 |
2 | 3 | 1 | Titanic | $2,194,439,542 | 1997 |
41 | 42 | 2 | Star Wars: Episode I – The Phantom Menace | $1,027,044,677 | 1999 |
46 | 47 | 2PS | Harry Potter and the Philosopher's Stone | $975,051,288 | 2001 |
dataframe.sort_values('Year', ascending=False).head()
Rank | Peak | Title | Worldwide gross | Year | |
---|---|---|---|---|---|
0 | 1 | 1 | Avengers: Endgame | $2,797,800,564 | 2019 |
9 | 10 | 10 | Frozen II | $1,450,026,933 | 2019 |
36 | 37 | 34 | Aladdin | $1,050,693,953 | 2019 |
32 | 33 | 30 | Toy Story 4 | $1,073,394,593 | 2019 |
31 | 32 | 32 | Star Wars: The Rise of Skywalker | $1,074,144,248 | 2019 |
dataframe.query("Year>=2017")
Rank | Peak | Title | Worldwide gross | Year | |
---|---|---|---|---|---|
0 | 1 | 1 | Avengers: Endgame | $2,797,800,564 | 2019 |
4 | 5 | 4 | Avengers: Infinity War | $2,048,359,754 | 2018 |
6 | 7 | 7 | The Lion King | $1,656,943,394 | 2019 |
9 | 10 | 10 | Frozen II | $1,450,026,933 | 2019 |
11 | 12 | 9 | Black Panther | $1,346,913,161 | 2018 |
13 | 14 | 9 | Star Wars: The Last Jedi | $1,332,539,889 | 2017 |
14 | 15 | 12 | Jurassic World: Fallen Kingdom | $1,309,484,461 | 2018 |
16 | 17 | 10 | Beauty and the Beast | $1,263,521,126 | 2017 |
17 | 18 | 15 | Incredibles 2 | $1,242,805,359 | 2018 |
18 | 19 | 11 | The Fate of the Furious | F8$1,238,764,765 | 2017 |
22 | 23 | 20 | Aquaman | $1,148,161,807 | 2018 |
24 | 25 | 24 | Spider-Man: Far From Home | $1,131,927,996 | 2019 |
25 | 26 | 23 | Captain Marvel | $1,128,274,794 | 2019 |
30 | 31 | 31 | Joker | $1,074,251,311 | 2019 |
31 | 32 | 32 | Star Wars: The Rise of Skywalker | $1,074,144,248 | 2019 |
32 | 33 | 30 | Toy Story 4 | $1,073,394,593 | 2019 |
36 | 37 | 34 | Aladdin | $1,050,693,953 | 2019 |
38 | 39 | 24 | Despicable Me 3 | $1,034,799,409 | 2017 |
selection = dataframe['Year']>=2017
selection.head()
0 True 1 False 2 False 3 False 4 True Name: Year, dtype: bool
dataframe[selection]
Rank | Peak | Title | Worldwide gross | Year | |
---|---|---|---|---|---|
0 | 1 | 1 | Avengers: Endgame | $2,797,800,564 | 2019 |
4 | 5 | 4 | Avengers: Infinity War | $2,048,359,754 | 2018 |
6 | 7 | 7 | The Lion King | $1,656,943,394 | 2019 |
9 | 10 | 10 | Frozen II | $1,450,026,933 | 2019 |
11 | 12 | 9 | Black Panther | $1,346,913,161 | 2018 |
13 | 14 | 9 | Star Wars: The Last Jedi | $1,332,539,889 | 2017 |
14 | 15 | 12 | Jurassic World: Fallen Kingdom | $1,309,484,461 | 2018 |
16 | 17 | 10 | Beauty and the Beast | $1,263,521,126 | 2017 |
17 | 18 | 15 | Incredibles 2 | $1,242,805,359 | 2018 |
18 | 19 | 11 | The Fate of the Furious | F8$1,238,764,765 | 2017 |
22 | 23 | 20 | Aquaman | $1,148,161,807 | 2018 |
24 | 25 | 24 | Spider-Man: Far From Home | $1,131,927,996 | 2019 |
25 | 26 | 23 | Captain Marvel | $1,128,274,794 | 2019 |
30 | 31 | 31 | Joker | $1,074,251,311 | 2019 |
31 | 32 | 32 | Star Wars: The Rise of Skywalker | $1,074,144,248 | 2019 |
32 | 33 | 30 | Toy Story 4 | $1,073,394,593 | 2019 |
36 | 37 | 34 | Aladdin | $1,050,693,953 | 2019 |
38 | 39 | 24 | Despicable Me 3 | $1,034,799,409 | 2017 |
Often real data arrives in a format that can only be described as "far from optimal"
The first (and major) part of data analysis is data cleaning and preprocessing in a decent form
In our case, for example, we might need to adjust the earning of each movies, as we would like to treat them as a number and not strings
c = 'Worldwide gross'
dataframe[c].str.split('$').head()
0 [, 2,797,800,564] 1 [, 2,790,439,000] 2 [, 2,194,439,542] 3 [, 2,068,223,624] 4 [, 2,048,359,754] Name: Worldwide gross, dtype: object
dataframe[c].str.split('$').str[-1].head()
0 2,797,800,564 1 2,790,439,000 2 2,194,439,542 3 2,068,223,624 4 2,048,359,754 Name: Worldwide gross, dtype: object
dataframe[c] = dataframe[c].str.split('$').str[-1]
dataframe[c] = dataframe[c].str.replace(',', '')
dataframe[c] = dataframe[c].astype(np.int64)
dataframe.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Rank 50 non-null int64 1 Peak 50 non-null object 2 Title 50 non-null object 3 Worldwide gross 50 non-null int64 4 Year 50 non-null int64 dtypes: int64(3), object(2) memory usage: 1.6+ KB
Sometimes, one needs to use some violence...
try:
dataframe['Peak'].astype(int)
except ValueError as e:
print(e)
invalid literal for int() with base 10: '4TS3'
print(list(dataframe['Peak'].unique()))
['1', '3', '4', '7', '10', '5', '9', '12', '15', '11', '20', '2', '24', '23', '31', '32', '30', '4TS3', '34', '6', '22', '14', '2PS', '19DM2']
Given that there is no simple transformation, we need to use regular expressions.
regular expression are a way to express text structure and to specify which part to extract from it
import re
regex = re.compile('(\d+)\D*\d*')
regex = re.compile(
'(\d+)' # extract this group, composed of one or more digits
'\D*' # can be followed by 0 or more non digits
'\d*' # can be followed by 0 or more digits
)
dataframe['Peak'] = dataframe['Peak'].str.extract(regex, expand=False)
dataframe['Peak'] = dataframe['Peak'].astype(int)
dataframe.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Rank 50 non-null int64 1 Peak 50 non-null int32 2 Title 50 non-null object 3 Worldwide gross 50 non-null int64 4 Year 50 non-null int64 dtypes: int32(1), int64(3), object(1) memory usage: 1.6+ KB
dataframe['Rank'] = dataframe['Rank'].astype(np.int64)
dataframe.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Rank 50 non-null int64 1 Peak 50 non-null int32 2 Title 50 non-null object 3 Worldwide gross 50 non-null int64 4 Year 50 non-null int64 dtypes: int32(1), int64(3), object(1) memory usage: 1.6+ KB
dataframe.describe()
Rank | Peak | Worldwide gross | Year | |
---|---|---|---|---|
count | 50.00000 | 50.000000 | 5.000000e+01 | 50.000000 |
mean | 25.50000 | 10.980000 | 1.291294e+09 | 2012.960000 |
std | 14.57738 | 9.725812 | 4.193347e+08 | 6.639277 |
min | 1.00000 | 1.000000 | 9.665506e+08 | 1993.000000 |
25% | 13.25000 | 3.250000 | 1.046959e+09 | 2011.000000 |
50% | 25.50000 | 7.000000 | 1.130101e+09 | 2015.000000 |
75% | 37.75000 | 18.000000 | 1.339405e+09 | 2018.000000 |
max | 50.00000 | 34.000000 | 2.797801e+09 | 2019.000000 |
We can do it with both matplotlib and pandas.
both have special methods to display the data contained in a dataframe.
Later on we will see a more appropriate library, seaborn, but for now we will use a quick & dirty approach
import pylab as plt
plt.scatter('Rank', 'Peak', data=dataframe)
<matplotlib.collections.PathCollection at 0x1925370>
dataframe.plot.scatter('Rank', 'Peak')
<matplotlib.axes._subplots.AxesSubplot at 0x19af510>
plt.plot('Rank', 'Worldwide gross', data=dataframe)
[<matplotlib.lines.Line2D at 0x4b9b710>]
with plt.xkcd():
dataframe.plot('Rank', 'Worldwide gross')
plt.hist('Worldwide gross', data=dataframe);
dataframe['Worldwide gross'].plot.hist()
<matplotlib.axes._subplots.AxesSubplot at 0x4cbb9d0>
pandas is actually just creating a matplotlib plot under the hood, so you can just extract it and modify it as any other plot
dataframe['Worldwide gross'].plot.hist()
ax = plt.gca()
fig = plt.gcf()
ax.set_title("Histogram of Worldwide gross", fontsize=25, y=1.05)
fig.tight_layout()
Pandas dataframes (and in general the dataframe structure) is designed to represent data stored in table form, with columns and rows, containing scalar data such as height, weight, age and so on...
For more complicated data, where different kind of data structure need to be related to each other while keeping most of the goodies that pandas provides, an alternative is XArray.
This library includes the equivalent of the pandas dataframe and series (DataArray and DataSet), that provide an efficient and comfortable ways to manipulate multidimensional arrays, where several of them share one of more of their indexes
we will discuss some common operations on dataframes:
this is a whole family of operations, that can be summarized as:
the result of step 3 is going to be a value for group in the case of aggregation operations (sum, average, etc...) or a new versione of the dataframe with the transformed values.
wiki = "https://it.wikipedia.org/wiki/"
url_popolazione = wiki + "Comuni_d%27Italia_per_popolazione"
url_superficie = wiki + "Primi_100_comuni_italiani_per_superficie"
comuni_popolazione = pd.read_html(url_popolazione, header=0)
comuni_popolazione = comuni_popolazione[0]
comuni_popolazione.head()
N° | Comune | Regione | Provincia / Città metropolitana | Abitanti | |
---|---|---|---|---|---|
0 | 1 | Roma | Lazio | Roma | 2 847 490 |
1 | 2 | Milano | Lombardia | Milano | 1 388 223 |
2 | 3 | Napoli | Campania | Napoli | 955 503 |
3 | 4 | Torino | Piemonte | Torino | 875 063 |
4 | 5 | Palermo | Sicilia | Palermo | 659 052 |
comuni_superficie = pd.read_html(url_superficie, header=0)
# might change, right now the 0 it's a info box
comuni_superficie = comuni_superficie[1]
comuni_superficie.head()
Pos. | Comune | Regione | Provincia | Superficie (km²) | |
---|---|---|---|---|---|
0 | 1 | Roma | Lazio | Roma | 128736 |
1 | 2 | Ravenna | Emilia-Romagna | Ravenna | 65382 |
2 | 3 | Cerignola | Puglia | Foggia | 59393 |
3 | 4 | Noto | Sicilia | Siracusa | 55499 |
4 | 5 | Sassari | Sardegna | Sassari | 54704 |
comuni_superficie.groupby('Regione').mean()
Pos. | Superficie (km²) | |
---|---|---|
Regione | ||
Abruzzo | 9.000000 | 47391.000000 |
Basilicata | 54.666667 | 29641.000000 |
Calabria | 52.333333 | 28937.666667 |
Emilia-Romagna | 56.200000 | 31154.100000 |
Lazio | 29.250000 | 56263.750000 |
Liguria | 80.000000 | 24029.000000 |
Lombardia | 94.500000 | 22701.500000 |
Marche | 84.333333 | 24168.000000 |
Puglia | 46.210526 | 33034.263158 |
Sardegna | 62.625000 | 29839.375000 |
Sicilia | 46.300000 | 32300.150000 |
Toscana | 52.142857 | 29941.357143 |
Trentino-Alto Adige | 56.000000 | 27485.000000 |
Umbria | 32.142857 | 36175.285714 |
Veneto | 49.000000 | 30853.000000 |
g = comuni_superficie.groupby('Regione')
g.aggregate([np.mean, np.std, pd.Series.count])
Pos. | Superficie (km²) | |||||
---|---|---|---|---|---|---|
mean | std | count | mean | std | count | |
Regione | ||||||
Abruzzo | 9.000000 | NaN | 1 | 47391.000000 | NaN | 1 |
Basilicata | 54.666667 | 33.321665 | 3 | 29641.000000 | 8419.030110 | 3 |
Calabria | 52.333333 | 26.407070 | 3 | 28937.666667 | 5408.599850 | 3 |
Emilia-Romagna | 56.200000 | 30.828558 | 10 | 31154.100000 | 13146.217719 | 10 |
Lazio | 29.250000 | 24.743686 | 4 | 56263.750000 | 48688.754926 | 4 |
Liguria | 80.000000 | NaN | 1 | 24029.000000 | NaN | 1 |
Lombardia | 94.500000 | 2.121320 | 2 | 22701.500000 | 40.305087 | 2 |
Marche | 84.333333 | 24.542480 | 3 | 24168.000000 | 2632.717987 | 3 |
Puglia | 46.210526 | 29.628400 | 19 | 33034.263158 | 10048.492396 | 19 |
Sardegna | 62.625000 | 32.762947 | 8 | 29839.375000 | 11275.484278 | 8 |
Sicilia | 46.300000 | 27.380554 | 20 | 32300.150000 | 9656.570331 | 20 |
Toscana | 52.142857 | 26.590505 | 14 | 29941.357143 | 7114.648125 | 14 |
Trentino-Alto Adige | 56.000000 | 24.041631 | 2 | 27485.000000 | 3877.773588 | 2 |
Umbria | 32.142857 | 20.860078 | 7 | 36175.285714 | 9897.267396 | 7 |
Veneto | 49.000000 | 29.461840 | 3 | 30853.000000 | 9300.741315 | 3 |
comuni_superficie.groupby('Regione')['Superficie (km²)'].count()
Regione Abruzzo 1 Basilicata 3 Calabria 3 Emilia-Romagna 10 Lazio 4 Liguria 1 Lombardia 2 Marche 3 Puglia 19 Sardegna 8 Sicilia 20 Toscana 14 Trentino-Alto Adige 2 Umbria 7 Veneto 3 Name: Superficie (km²), dtype: int64
g = comuni_superficie.groupby('Regione')['Superficie (km²)']
g.count().sort_values(ascending=False)
Regione Sicilia 20 Puglia 19 Toscana 14 Emilia-Romagna 10 Sardegna 8 Umbria 7 Lazio 4 Veneto 3 Marche 3 Calabria 3 Basilicata 3 Trentino-Alto Adige 2 Lombardia 2 Liguria 1 Abruzzo 1 Name: Superficie (km²), dtype: int64
g = comuni_popolazione.groupby('Regione')['Abitanti']
g.count().sort_values(ascending=False)
Regione Campania 19 Sicilia 16 Lombardia 15 Puglia 15 Toscana 13 Emilia-Romagna 13 Lazio 11 Calabria 6 Veneto 6 Piemonte 6 Abruzzo 5 Liguria 4 Sardegna 4 Umbria 3 Marche 3 Friuli-Venezia Giulia 3 Trentino-Alto Adige 2 Basilicata 2 Name: Abitanti, dtype: int64
When I have two separate tables that share (at least partially) their index, I can join the two.
In this case, for example, I can try to obtain for each town their surface and population.
In general this can be used to keep the data tables in a clean and tidy format for storage, and then merge the information I need for each analysis.
For example, in a tidy dataset where I have several measurements for each subject, it would not be a good idea to store their age repeatedly (could lead to inconsistency), but it would be better to keep it as a separate data table and then join them if needed
There are several ways to combine the two tables together, expressed by the keyword how. these are:
in the left join the left dataframe is kept completely.
the right dataframe is selected based on the index of the first one:
this is the default join in pandas and most databases. the right join is exactly the opposite but using the index of the right dataframe to select on the left one
In the inner join only the elements that are common to both dataframes indexes are kept (it is akin to an intersection of the two).
In the outer join all the elements are kept, with all the possible combinations repeated (it is akin to a combination of cartesian products of the elements)
a = pd.DataFrame(
[
('Antonio', 'M'),
('Marco', 'M'),
('Francesca', 'F'),
('Giulia', 'F'),
],
columns = ['name', 'sex'])
b = pd.DataFrame(
[
('Antonio', 15),
('Marco', 10),
('Marco', 12),
('Carlo', 23),
('Francesca', 20),
],
columns = ['name', 'expenses'])
a
name | sex | |
---|---|---|
0 | Antonio | M |
1 | Marco | M |
2 | Francesca | F |
3 | Giulia | F |
b
name | expenses | |
---|---|---|
0 | Antonio | 15 |
1 | Marco | 10 |
2 | Marco | 12 |
3 | Carlo | 23 |
4 | Francesca | 20 |
pd.merge(a, b, on='name', how='left')
name | sex | expenses | |
---|---|---|---|
0 | Antonio | M | 15.0 |
1 | Marco | M | 10.0 |
2 | Marco | M | 12.0 |
3 | Francesca | F | 20.0 |
4 | Giulia | F | NaN |
We can validate the known relationships between these tables using the validate
option.
In this case the relationship is one to many
.
this can save us from surprises/errors in the source data!
pd.merge(a, b, on='name', how='left', validate="1:m")
name | sex | expenses | |
---|---|---|---|
0 | Antonio | M | 15.0 |
1 | Marco | M | 10.0 |
2 | Marco | M | 12.0 |
3 | Francesca | F | 20.0 |
4 | Giulia | F | NaN |
# if we validate with one to one it does fail
pd.merge(a, b, on='name', how='left', validate="1:1")
--------------------------------------------------------------------------- MergeError Traceback (most recent call last) <ipython-input-14-c1ff55754590> in <module> 1 # if we validate with one to one it does fail ----> 2 pd.merge(a, b, on='name', how='left', validate="1:1") ~/miniconda3/lib/python3.8/site-packages/pandas/core/reshape/merge.py in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate) 72 validate=None, 73 ) -> "DataFrame": ---> 74 op = _MergeOperation( 75 left, 76 right, ~/miniconda3/lib/python3.8/site-packages/pandas/core/reshape/merge.py in __init__(self, left, right, how, on, left_on, right_on, axis, left_index, right_index, sort, suffixes, copy, indicator, validate) 676 # are in fact unique. 677 if validate is not None: --> 678 self._validate(validate) 679 680 def get_result(self): ~/miniconda3/lib/python3.8/site-packages/pandas/core/reshape/merge.py in _validate(self, validate) 1364 ) 1365 elif not right_unique: -> 1366 raise MergeError( 1367 "Merge keys are not unique in right dataset; not a one-to-one merge" 1368 ) MergeError: Merge keys are not unique in right dataset; not a one-to-one merge
pd.merge(a, b, on='name', how='right')
name | sex | expenses | |
---|---|---|---|
0 | Antonio | M | 15 |
1 | Marco | M | 10 |
2 | Marco | M | 12 |
3 | Carlo | NaN | 23 |
4 | Francesca | F | 20 |
pd.merge(a, b, on='name', how='inner')
name | sex | expenses | |
---|---|---|---|
0 | Antonio | M | 15 |
1 | Marco | M | 10 |
2 | Marco | M | 12 |
3 | Francesca | F | 20 |
pd.merge(a, b, on='name', how='outer')
name | sex | expenses | |
---|---|---|---|
0 | Antonio | M | 15.0 |
1 | Marco | M | 10.0 |
2 | Marco | M | 12.0 |
3 | Francesca | F | 20.0 |
4 | Giulia | F | NaN |
5 | Carlo | NaN | 23.0 |
How does this joins look for our data?
_ = pd.merge(
comuni_popolazione,
comuni_superficie,
on=['Comune', 'Regione'],
)
_.head()
N° | Comune | Regione | Provincia / Città metropolitana | Abitanti | Pos. | Provincia | Superficie (km²) | |
---|---|---|---|---|---|---|---|---|
0 | 1 | Roma | Lazio | Roma | 2 847 490 | 1 | Roma | 128736 |
1 | 6 | Genova | Liguria | Genova | 575 577 | 80 | Genova | 24029 |
2 | 11 | Venezia | Veneto | Venezia | 259 736 | 15 | Venezia | 41590 |
3 | 17 | Parma | Emilia-Romagna | Parma | 197 478 | 62 | Parma | 26060 |
4 | 18 | Taranto | Puglia | Taranto | 195 279 | 71 | Taranto | 24986 |
len(pd.merge(
comuni_popolazione,
comuni_superficie,
on='Comune',
how='right',
))
100
len(pd.merge(
comuni_popolazione,
comuni_superficie,
on='Comune',
how='left',
))
146
len(pd.merge(
comuni_popolazione,
comuni_superficie,
on='Comune',
how='inner',
))
37
len(pd.merge(
comuni_popolazione,
comuni_superficie,
on='Comune',
how='outer',
))
209
Pivoting is a family of operations that allows to create aggregated tables (including contingency tables) starting from a tidy dataset.
It takes a tidy dataset and put it in a wide format. (the inverse operation is usually referred as melting)
To perform a pivot one chooses:
if there is more than one value that correspond to each pair of values (index and column) then one needs to specify some aggregation function to summarize those values, such as sum, average, counts, standard deviation, etc...
spese = [
('Antonio', 'cat', 4),
('Antonio', 'cat', 5),
('Antonio', 'cat', 6),
('Giulia', 'cat', 3),
('Giulia', 'dog', 7),
('Giulia', 'dog', 8),
]
spese = pd.DataFrame(spese, columns = ['name', 'animal', 'expenses'])
spese
name | animal | expenses | |
---|---|---|---|
0 | Antonio | cat | 4 |
1 | Antonio | cat | 5 |
2 | Antonio | cat | 6 |
3 | Giulia | cat | 3 |
4 | Giulia | dog | 7 |
5 | Giulia | dog | 8 |
pd.pivot_table(
spese,
index='name',
columns='animal',
values='expenses',
aggfunc=np.sum,
)
animal | cat | dog |
---|---|---|
name | ||
Antonio | 15.0 | NaN |
Giulia | 3.0 | 15.0 |
pd.pivot_table(
spese,
index='name',
columns='animal',
values='expenses',
aggfunc=np.sum,
fill_value=0,
)
animal | cat | dog |
---|---|---|
name | ||
Antonio | 15 | 0 |
Giulia | 3 | 15 |
pd.pivot_table(
spese,
index='name',
columns='animal',
values='expenses',
aggfunc=np.sum,
fill_value=0,
margins=True,
)
animal | cat | dog | All |
---|---|---|---|
name | |||
Antonio | 15 | 0 | 15 |
Giulia | 3 | 15 | 18 |
All | 18 | 15 | 33 |
pd.pivot_table(
spese,
index='name',
columns='animal',
values='expenses',
aggfunc=pd.Series.count,
fill_value=0,
)
animal | cat | dog |
---|---|---|
name | ||
Antonio | 3 | 0 |
Giulia | 1 | 2 |
r = pd.pivot_table(
spese,
index='name',
columns='animal',
values='expenses',
aggfunc=pd.Series.count,
fill_value=0,
)
r = r.reset_index()
r
animal | name | cat | dog |
---|---|---|---|
0 | Antonio | 3 | 0 |
1 | Giulia | 1 | 2 |
Melting converts a wide table in a long format, basically converting the columns names in new values to use for indexing
v = pd.melt(r, id_vars=['name'], value_vars=['dog', 'cat'])
v
name | animal | value | |
---|---|---|---|
0 | Antonio | dog | 0 |
1 | Giulia | dog | 2 |
2 | Antonio | cat | 3 |
3 | Giulia | cat | 1 |
v2 = v.set_index(['name', 'animal'])['value']
v2
name animal Antonio dog 0 Giulia dog 2 Antonio cat 3 Giulia cat 1 Name: value, dtype: int64
v2.unstack()
animal | cat | dog |
---|---|---|
name | ||
Antonio | 3 | 0 |
Giulia | 1 | 2 |
v2.unstack().stack()
name animal Antonio cat 3 dog 0 Giulia cat 1 dog 2 dtype: int64
v.pivot(index='name', columns='animal', values='value')
animal | cat | dog |
---|---|---|
name | ||
Antonio | 3 | 0 |
Giulia | 1 | 2 |
v.pivot(index='name', columns='animal', values='value')
is identical to
v2.unstack()
but one acts on Series (unstack) and the other on tidy DataFrames (pivot)
unstack does not support aggregation, assume all indexes are unique
url = 'https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv'
iris = pd.read_csv(url)
iris.head()
sepal_length | sepal_width | petal_length | petal_width | species | |
---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | setosa |
1 | 4.9 | 3.0 | 1.4 | 0.2 | setosa |
2 | 4.7 | 3.2 | 1.3 | 0.2 | setosa |
3 | 4.6 | 3.1 | 1.5 | 0.2 | setosa |
4 | 5.0 | 3.6 | 1.4 | 0.2 | setosa |
iris.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 sepal_length 150 non-null float64 1 sepal_width 150 non-null float64 2 petal_length 150 non-null float64 3 petal_width 150 non-null float64 4 species 150 non-null object dtypes: float64(4), object(1) memory usage: 5.3+ KB
import seaborn
Seaborn by deafult changes the standard configurations of matplotlib for visualization
You can set however you like using the styles module of matplotlib
from matplotlib import style
print(sorted(style.available))
style.use('default')
['Solarize_Light2', '_classic_test', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblind10']
seaborn.lmplot(
'sepal_length',
'sepal_width',
data=iris,
hue='species',
)
<seaborn.axisgrid.FacetGrid at 0xe956bd0>
seaborn.lmplot(
'sepal_length',
'sepal_width',
data=iris,
col='species',
)
<seaborn.axisgrid.FacetGrid at 0xe97e470>
seaborn.lmplot(
'sepal_length',
'sepal_width',
data=iris,
row='species',
)
<seaborn.axisgrid.FacetGrid at 0xeaa34b0>
fg = seaborn.FacetGrid(
data=iris,
col='species',
hue='species',
height=4,
aspect=0.9,
)
fg.map(
plt.scatter,
'sepal_length',
'sepal_width',
s=50,
)
fg.map(
seaborn.regplot,
'sepal_length',
'sepal_width',
scatter=False,
)
fg.add_legend();
seaborn.jointplot(
'sepal_length',
'sepal_width',
data=iris,
kind="kde",
);
seaborn.boxplot(
'species',
'sepal_length',
data=iris,
)
<matplotlib.axes._subplots.AxesSubplot at 0x10be14d0>
seaborn.pairplot(iris, hue="species")
<seaborn.axisgrid.PairGrid at 0x10c30e70>
g = seaborn.PairGrid(
iris,
height=2,
hue='species',
)
g.map_diag(plt.hist, alpha=0.5)
g.map_offdiag(plt.scatter, alpha=0.75, s=20);
pandas provides various options to export dataframes, but we can divide them in two groups:
many functions are provided to export (and read) to different formats that can then be used to load the data and perform additional analysis:
to_clipboard
to_csv
to_excel
to_feather
to_hdf
to_json
to_parquet
to_sql
to_stata
to_xml
there are also many other functions to convert dataframes to other data structures such as numpy array, dictionaries, xarrays, etc...
For data storage an interesting approach (superior to simple csv or tsv) is to export to JSONlines format (we'll see more in the future), by using the lines=True
parameter in both to_json
and read_json
data = [{'label': 'DRUG', 'pattern': 'aspirin'},
{'label': 'DRUG', 'pattern': 'trazodone'},
{'label': 'DRUG', 'pattern': 'citalopram'}]
df = pd.DataFrame(data)
print(df)
label pattern 0 DRUG aspirin 1 DRUG trazodone 2 DRUG citalopram
# Output in JSONL format
jsonlines = df.to_json(orient='records', lines=True)
print(jsonlines)
{"label":"DRUG","pattern":"aspirin"} {"label":"DRUG","pattern":"trazodone"} {"label":"DRUG","pattern":"citalopram"}
df_clone = pd.read_json(jsonlines, lines=True)
print(df_clone)
label pattern 0 DRUG aspirin 1 DRUG trazodone 2 DRUG citalopram
Pandas provides also functions to export dataframes in a way compatible with reports, such as:
.style.to_html
.style.to_latex
to_markdown
data = [{'label': 'DRUG', 'pattern': 'aspirin'},
{'label': 'DRUG', 'pattern': 'trazodone'},
{'label': 'DRUG', 'pattern': 'citalopram'}]
df = pd.DataFrame(data)
print(df.style.to_latex())
\begin{tabular}{lll} & label & pattern \\ 0 & DRUG & aspirin \\ 1 & DRUG & trazodone \\ 2 & DRUG & citalopram \\ \end{tabular}
print(df.style.to_html())
<style type="text/css"> </style> <table id="T_fdcf4"> <thead> <tr> <th class="blank level0" > </th> <th id="T_fdcf4_level0_col0" class="col_heading level0 col0" >label</th> <th id="T_fdcf4_level0_col1" class="col_heading level0 col1" >pattern</th> </tr> </thead> <tbody> <tr> <th id="T_fdcf4_level0_row0" class="row_heading level0 row0" >0</th> <td id="T_fdcf4_row0_col0" class="data row0 col0" >DRUG</td> <td id="T_fdcf4_row0_col1" class="data row0 col1" >aspirin</td> </tr> <tr> <th id="T_fdcf4_level0_row1" class="row_heading level0 row1" >1</th> <td id="T_fdcf4_row1_col0" class="data row1 col0" >DRUG</td> <td id="T_fdcf4_row1_col1" class="data row1 col1" >trazodone</td> </tr> <tr> <th id="T_fdcf4_level0_row2" class="row_heading level0 row2" >2</th> <td id="T_fdcf4_row2_col0" class="data row2 col0" >DRUG</td> <td id="T_fdcf4_row2_col1" class="data row2 col1" >citalopram</td> </tr> </tbody> </table>
pandas style
provides a (relatively) simple way to format the table representation to make it more informative and visually pleaseant
expenses = [
('antonio', 'cat', 4),
('antonio', 'cat', 5),
('antonio', 'cat', 6),
('giulia', 'cat', 3),
('giulia', 'dog', 7),
('giulia', 'dog', 8),
]
expenses = pd.DataFrame(expenses, columns = ['name', 'animal', 'expenses'])
expenses
name | animal | expenses | |
---|---|---|---|
0 | antonio | cat | 4 |
1 | antonio | cat | 5 |
2 | antonio | cat | 6 |
3 | giulia | cat | 3 |
4 | giulia | dog | 7 |
5 | giulia | dog | 8 |
# can format the content with format minilanguage and functions
expenses.style.format({"expenses": "{:.2f} €", "name": str.title})
name | animal | expenses | |
---|---|---|---|
0 | Antonio | cat | 4.00 € |
1 | Antonio | cat | 5.00 € |
2 | Antonio | cat | 6.00 € |
3 | Giulia | cat | 3.00 € |
4 | Giulia | dog | 7.00 € |
5 | Giulia | dog | 8.00 € |
# can apply generic functions (there is a wide list)
expenses.style.highlight_max(color='coral', subset=["expenses"])
name | animal | expenses | |
---|---|---|---|
0 | antonio | cat | 4 |
1 | antonio | cat | 5 |
2 | antonio | cat | 6 |
3 | giulia | cat | 3 |
4 | giulia | dog | 7 |
5 | giulia | dog | 8 |
#can apply a generic function cell-wise, column-wise, etc...
def highlight_median(x, color):
import numpy as np
median = np.median(x.to_numpy())
style_to_apply = f"color: {color};"
return np.where(x>median, style_to_apply, None)
expenses.style.apply(highlight_median, color='orange', subset=["expenses"])
name | animal | expenses | |
---|---|---|---|
0 | antonio | cat | 4 |
1 | antonio | cat | 5 |
2 | antonio | cat | 6 |
3 | giulia | cat | 3 |
4 | giulia | dog | 7 |
5 | giulia | dog | 8 |
# can export the styling to latex and html
latex_result = (
expenses.style
.format({"expenses": "{:.2f} €", "name": str.title})
.highlight_max(
subset=["expenses"],
props=(
'cellcolor:[HTML]{FFFF00}; '
'color:{red}; '
'bfseries: ; '
)
)
.set_caption("some info about pets")
.to_latex()
)
print(latex_result)
\begin{table} \caption{some info about pets} \begin{tabular}{lllr} & name & animal & expenses \\ 0 & Antonio & cat & 4.00 € \\ 1 & Antonio & cat & 5.00 € \\ 2 & Antonio & cat & 6.00 € \\ 3 & Giulia & cat & 3.00 € \\ 4 & Giulia & dog & 7.00 € \\ 5 & Giulia & dog & \cellcolor[HTML]{FFFF00} \color{red} \bfseries 8.00 € \\ \end{tabular} \end{table}
Download the list of the nobel prize winners, and count the winners by category and country
Then try to correlate this information with the pro-capite consumption of beer in each country, in particular for the physics degree.